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(i) By definition μ1 = (N1/NA ) and μ2 = (N2/NA)
where N1 and N2 are the number of molecules
of 1 and 2, and NA is the Avogadro’s number.
Therefore, (N1/N2) = (μ1 / μ2)  = 3/2.

(ii) We can also write μ1 = (m1/M1) and μ2 =
(m2/M2) where m1 and m2 are the masses of
1 and 2; and M1 and M2 are their molecular
masses. (Both m1 and M1; as well as m2 and
M2 should be expressed in the same units).
If ρ1 and ρ2  are the mass densities of 1 and
2 respectively,  we have
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13.4 KINETIC THEORY OF AN IDEAL GAS

Kinetic theory of gases is based on the molecular
picture of matter. A given amount of gas is a
collection of a large number of molecules
(typically of the order of Avogadro’s number) that
are in incessant random motion. At ordinary
pressure and temperature, the average distance
between molecules is a factor of 10 or more than
the typical size of a molecule (2 Å). Thus the
interaction between the molecules is negligible
and we can assume that they move freely in
straight lines according to Newton’s first law.
However, occasionally, they come close to each
other, experience intermolecular forces and their
velocities change.  These interactions are called
collisions.  The molecules collide incessantly
against each other or with the walls and change
their velocities.  The collisions are considered to
be elastic. We can derive an expression for the
pressure of a gas based on the kinetic theory.

We begin with the idea that molecules of a
gas are in incessant random motion, colliding
against one another and with the walls of the
container. All collisions between molecules
among themselves or between molecules and the
walls are elastic. This implies that  total kinetic
energy is conserved. The total momentum is
conserved as usual.

13.4.1 Pressure of an Ideal Gas

Consider a gas enclosed in a cube of side l. Take
the axes to be parallel to the sides of the cube,
as shown in Fig. 13.4.  A molecule with velocity

(vx, vy, vz ) hits the planar wall parallel to yz-
plane of area A (= l2). Since the collision is elastic,
the molecule rebounds with the same velocity;
its y and z components of velocity do not change
in the collision but the x-component reverses
sign. That is, the velocity after collision is
(-vx, vy, vz ) . The change in momentum of the
molecule is :  –mvx – (mvx) = – 2mvx . By the
principle of conservation of momentum, the
momentum imparted to the wall in the collision
= 2mvx .

To calculate the force (and pressure) on the
wall, we need to calculate momentum imparted
to the wall per unit time. In a small time interval
Δt, a molecule with x-component of velocity vx
will hit the wall if it is within the distance vx Δt
from the wall. That is, all molecules within the
volume Avx Δt only can hit the wall in time Δt.
But, on the average, half of these are moving
towards the wall and the other half away from
the wall. Thus the number of molecules with
velocity (vx, vy, vz )  hitting the wall in time Δt is
�A vx  Δt n where n is the number of molecules
per unit volume. The total momentum
transferred to the wall by these molecules in
time Δt   is :

Q = (2mvx) (� n A vx Δt ) (13.10)
The force on the wall is the rate of momentum

transfer Q/Δt  and pressure is force per unit
area :

P =  Q /(A Δt)  =  n m vx
2 (3.11)

Actually, all molecules in a gas do not have
the same velocity; there is a distribution in
velocities.  The  above equation therefore, stands
for pressure due to the group of molecules with
speed vx  in  the x-direction and n stands for the
number density of that group of molecules. The

Fig. 13.4 Elastic collision of a gas molecule with
the wall of the container.
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total  pressure is obtained by summing over the
contribution due to all groups:

P = n m 2
xv (13.12)

where 2
xv  is the average of  vx

2  .  Now the gas
is isotropic, i.e. there is no preferred direction
of velocity of the molecules in the vessel.
Therefore, by symmetry,

2
xv  = 2

yv  = 2
zv

= (1/3) [ 2
xv  +  2

yv  + 2
zv ] = (1/3) 2v (13.13)

where v is the speed and 2v   denotes the mean

of the squared speed. Thus

P = (1/3) n m 2v (13.14)

Some remarks on this derivation. First,
though we choose the container to be a cube,
the shape of the vessel really is immaterial. For
a vessel of arbitrary shape, we can always choose
a small infinitesimal (planar) area and carry
through the steps above. Notice that both A and
Δt do not appear in the final result. By Pascal’s
law, given in Ch. 10,  pressure in one portion of

the gas  in equilibrium is the same as anywhere
else. Second, we have ignored any collisions in
the derivation. Though this assumption is
difficult to justify rigorously, we can qualitatively
see that it will not lead to erroneous results.
The number of molecules hitting the wall in time
Δt was found to be � n Avx Δt. Now the collisions
are random and the gas is in a steady state.
Thus, if a molecule with velocity (vx, vy, vz )
acquires a  different velocity due to collision with
some molecule, there will always be some other
molecule with a different initial velocity which
after a collision acquires the velocity  (vx, vy, vz ).
If this were not so, the distribution of velocities
would not remain steady. In any case we are
finding 2

xv . Thus, on the whole, molecular
collisions (if they are not too frequent and the
time spent in a collision is negligible compared
to time between collisions)  will not affect the
calculation above.

13.4.2 Kinetic Interpretation of Temperature

Equation (13.14) can be written as
PV   =  (1/3) nV m 2v (13.15a)

Founders of Kinetic Theory of Gases

James Clerk Maxwell (1831 – 1879), born in Edinburgh,
Scotland, was among the greatest physicists of the nineteenth
century.  He derived the thermal velocity distribution of molecules
in a gas and was among the first to obtain reliable estimates of
molecular parameters from measurable quantities like viscosity,
etc.  Maxwell’s greatest achievement was the unification of the laws
of electricity and magnetism (discovered by Coulomb, Oersted,
Ampere and Faraday) into a consistent set of equations now called
Maxwell’s equations. From these he arrived at the most important
conclusion that light is an
electromagnetic wave.
Interestingly, Maxwell did not
agree with the idea (strongly
suggested by the Faraday’s
laws of electrolysis) that
electricity was particulate in
nature.

Ludwig Boltzmann
(1844 – 1906) born in

Vienna, Austria, worked on the kinetic theory of gases
independently of Maxwell.  A firm advocate of atomism, that is
basic to kinetic theory, Boltzmann provided a statistical
interpretation of the Second Law of thermodynamics and the
concept of entropy. He is regarded as one of the founders of classical
statistical mechanics. The proportionality constant connecting
energy and temperature in kinetic theory is known as Boltzmann’s
constant in his honour.

© N
CERT

no
t to

 be
 re

pu
bli

sh
ed



KINETIC THEORY 325

W

PV   =   (2/3) N x � m 2v (13.15b)
where N (= nV ) is the number of molecules in
the sample.

The quantity in the bracket is the average
translational kinetic energy of the molecules in
the gas. Since the internal energy E of an ideal
gas is purely kinetic*,

E = N  (1/2) m 2v (13.16)

Equation (13.15) then gives :
PV = (2/3) E (13.17)
We are now ready for a kinetic interpretation

of temperature. Combining Eq. (13.17) with the
ideal gas Eq. (13.3), we get

E = (3/2)  kB  NT                                             (13.18)
or  E/ N = �  m 2v    =   (3/2) kBT (13.19)
i.e., the average kinetic energy of a molecule is
proportional to the absolute temperature of the
gas; it is independent of pressure, volume or
the nature of the ideal gas. This is a fundamental
result relating temperature, a macroscopic
measurable parameter of a gas
(a thermodynamic variable as it is called) to a
molecular quantity, namely the average kinetic
energy of a molecule. The two domains are
connected by the Boltzmann constant. We note
in passing that Eq. (13.18) tells us that internal
energy of an ideal gas depends only on
temperature, not on pressure or volume. With
this interpretation of temperature, kinetic theory
of an ideal gas is completely consistent with the
ideal gas equation and the various gas laws
based on it.

For a mixture of non-reactive ideal gases, the
total pressure gets contribution from each gas
in the mixture. Equation (13.14) becomes

P = (1/3) [n1m1
2
1v  + n2 m2 

2
2v +…  ] (13.20)

In equilibrium, the average kinetic energy of
the molecules of different gases will be equal.
That is,

�  m1 
2
1v  = � m2 

2
2v = (3/2) kB T

so that

P = (n1 + n2 +…  ) kB T (13.21)

which is Dalton’s law of partial pressures.
From Eq. (13.19), we can get an idea of the

typical speed of molecules in a gas. At a
temperature T = 300 K, the mean square speed
of a molecule in nitrogen gas is :

2 –26
26

28
4.65 10

6.02 10
N

A

M
m

N
    

  kg.

2v   =  3 kB T / m    =    (516)2 m2s-2

The square root of 2v  is known as root mean
square (rms) speed and is denoted by vrms,

( We can also write    2v     as   < v2 >.)
vrms   =    516 m s-1

The speed is of the order of the speed of sound
in air. It follows from Eq. (13.19) that at the same
temperature, lighter molecules have greater rms
speed.

Example 13.5 A flask contains argon and
chlorine in the ratio of 2:1 by mass.  The
temperature of the mixture is 27 °C. Obtain
the ratio of  (i) average kinetic energy per
molecule, and (ii) root mean square speed
vrms of the molecules of the two gases.
Atomic mass of argon = 39.9 u; Molecular
mass of chlorine = 70.9 u.

Answer The important point to remember is that
the average kinetic energy (per molecule) of any
(ideal) gas (be it monatomic like argon, diatomic
like chlorine or polyatomic) is always equal to
(3/2) kBT. It depends only on temperature, and
is independent of the nature of the gas.
(i) Since argon and chlorine both have the same

temperature in the flask, the ratio of average
kinetic energy (per molecule) of the two gases
is 1:1.

(ii) Now  � m vrms
2  =  average kinetic energy per

molecule =  (3/2) ) kBT where m is the mass
of a molecule of the gas. Therefore,

  
  

  
  

  
  

2

Cl ClAr
2

Ar ArCl

rms

rms

m M

m M
  

v

v = 
70.9
39.9

 =1.77

where M denotes the molecular mass of the gas.
(For argon, a molecule is just an atom of argon.)
Taking square root of both sides,

  
  

Ar

Cl

rms

rms

v

v  =  1.33

You should note that the composition of the
mixture by mass is quite irrelevant to the above

* E denotes the translational part of the internal energy U that may include energies due to other degrees of
freedom also. See section 13.5.
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calculation. Any other proportion by mass of
argon and chlorine would give the same answers
to (i) and (ii), provided the temperature remains
unaltered. W

Example 13.6   Uranium has two isotopes
of masses 235 and 238 units. If both are
present in Uranium hexafluoride gas which
would have the  larger average speed ? If
atomic mass of fluorine is 19 units,
estimate the percentage difference in
speeds at any temperature.

Answer  At a fixed temperature the average
energy  = � m <v2 > is constant. So  smaller the

mass of the molecule, faster will be the speed.
The ratio of speeds is inversely proportional to
the square root of the ratio of the masses. The
masses are 349 and 352 units. So

v349 / v352  =   ( 352/ 349)1/2 = 1.0044 .

Hence difference 
V

V

 
= 0.44 %.

[235U is the isotope needed for nuclear fission.
To separate it from the more abundant isotope
238U,  the mixture  is surrounded by a  porous
cylinder. The porous cylinder must be thick and
narrow, so that the molecule wanders through
individually, colliding with the walls of the long
pore. The faster molecule will leak out more than

Maxwell Distribution Function

In a given mass of gas, the velocities of all molecules are not the same, even when bulk
parameters like pressure, volume and temperature are fixed. Collisions change the direction
and the speed of molecules. However in a state of equilibrium, the distribution of speeds is
constant or fixed.

Distributions are very important and useful when dealing with systems containing large
number of  objects. As an example consider the ages of different persons in a city. It is not
feasible to deal with the age of each individual. We can divide the people into groups: children
up to age 20 years, adults between ages of 20 and 60, old people above 60. If we want more
detailed information we can choose smaller intervals, 0-1, 1-2,..., 99-100 of age groups. When
the size of the interval becomes smaller, say half year, the number of persons in the interval
will also reduce, roughly half the original number in the one  year interval. The number of
persons  dN(x)  in the age interval x and x+dx is proportional to dx or dN(x)  =   nx  dx.  We have
used nx to denote the number of persons at the value of x.

Maxwell distribution of molecular speeds

In a similar way the molecular speed distribution gives the number of molecules between
the speeds v and v+ dv. dN(v) = 4p N a3e–bv2 v2 dv = nvdv.  This is called Maxwell distribution.
The plot of nv  against v is shown in the figure. The fraction of the molecules with speeds v and
v+dv is equal to the area of the strip shown. The average of any quantity like v2 is defined by
the integral <v2> = (1/N ) ∫ v2 dN(v)   = ÅÅÅÅÅ(3kB T/m)    which  agrees with the result derived from
more elementary considerations.
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the slower one and so there is more of the lighter
molecule (enrichment) outside the porous
cylinder (Fig. 13.5). The method is not very
efficient and has to be repeated several times
for sufficient enrichment.]. W

When gases diffuse, their rate of diffusion is
inversely proportional to square root of the
masses (see Exercise 13.12 ). Can you guess the
explanation from the above answer?

Fig. 13.5  Molecules going through a porous wall.

Example 13.7  (a)  When a molecule (or
an elastic ball) hits a ( massive) wall, it
rebounds with the same speed. When a ball
hits a massive bat held firmly, the same
thing happens. However, when the bat is
moving towards the ball, the ball rebounds
with a different speed. Does the ball move
faster or slower? (Ch.6 will refresh your
memory on elastic collisions.)

(b) When gas in a cylinder is compressed
by pushing in a piston, its temperature
rises. Guess at an explanation of this in
terms of kinetic theory using (a) above.

(c) What happens when a compressed gas
pushes a piston out and expands. What
would you observe ?
(d) Sachin Tendulkar uses a heavy cricket
bat while playing. Does it help him in
anyway ?

Answer  (a)  Let the speed of the ball be u  relative
to the wicket behind the bat. If the bat is moving
towards the ball with a speed V  relative to the
wicket, then the relative speed of the ball to bat

is V + u  towards the bat. When the ball rebounds
(after hitting the massive bat) its speed,  relative
to bat,  is V + u  moving away from the bat. So
relative to the wicket the speed of the rebounding
ball is V + (V + u) = 2V + u, moving away from
the wicket. So the ball speeds up after the
collision with the bat. The rebound speed will
be less than u if the bat is not massive. For a
molecule this would imply an increase in
temperature.

You  should be able to answer (b) (c) and (d)
based on the answer to (a).
(Hint: Note the correspondence, piston  bat,

cylinder  wicket, molecule  ball.)         W

13.5  LAW OF EQUIPARTITION OF ENERGY

The kinetic energy of a single molecule is

2 2 21 1 1
      

2 2 2t x y zmv mv mv    (13.22)

For a gas in thermal equilibrium at
temperature T  the average value of energy

denoted by   < t > is

2 2 21 1 1 3
2 2 2 2t x y z Bmv mv mv k T     (13.23)

Since there is no preferred direction, Eq. (13.23)
implies

21 1
    

2 2x Bmv k T  ,
21 1

    
2 2y Bmv k T ,

21 1
    

2 2z Bmv k T (13.24)

A molecule free to move in space needs three
coordinates to specify its location. If it is
constrained to move in a plane it needs two;and
if constrained to move along a line, it needs just
one coordinate to locate it. This can also be
expressed in another way. We say that it  has
one degree of freedom for motion in a line, two
for motion in a plane and three for motion in
space. Motion of a body as a whole from one
point to another is called translation. Thus, a
molecule free to move in space has three
translational degrees of freedom. Each
translational degree of freedom contributes a
term that contains square of some variable of
motion, e.g., � mvx

2  and similar terms in
vy and vz. In, Eq. (13.24) we see that in thermal
equilibrium, the average of each such term is
� kBT .
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Molecules of a monatomic gas like argon have
only translational degrees of freedom. But what
about a diatomic gas such as O2 or N2? A
molecule of O2 has three translational degrees
of freedom. But in addition it can also rotate
about its centre of mass. Figure 13.6 shows the
two independent axes of rotation 1 and 2, normal
to the axis joining the two oxygen atoms about
which the molecule can rotate*. The molecule
thus has two rotational degrees of freedom, each
of which contributes a term to the total energy
consisting of translational energy t  and
rotational energy  r.

2 2 2 2 2
1 1 2 2

1 1 1 1 1
2 2 2 2 2t r x y zmv mv mv I I          (13.25)

Fig. 13.6 The two independent axes of rotation of a
diatomic molecule

where ω1 and ω2  are the angular speeds about
the axes 1 and 2 and I1, I2 are the corresponding
moments of inertia. Note that each rotational
degree of freedom contributes a term to the
energy that contains square of a rotational
variable of motion.

We have assumed above that the O2 molecule
is a ‘rigid rotator’, i.e. the molecule does not
vibrate. This assumption, though found to be
true (at moderate temperatures) for O2, is not
always valid. Molecules like CO even at moderate
temperatures have a mode of vibration, i.e. its
atoms oscillate along the interatomic axis  like
a one-dimensional oscillator, and contribute a
vibrational energy term εv to the total energy:

2
21 d 1

2 d 2v

y
m ky

t
         

t r v        (13.26)

where k is the force constant of the oscillator
and y the vibrational co-ordinate.

Once again the vibrational energy terms in
Eq. (13.26) contain squared terms of vibrational
variables of motion y and dy/dt .

At this point, notice an important feature in
Eq.(13.26). While each translational and
rotational degree of freedom has contributed only
one ‘squared term’ in Eq.(13.26), one vibrational
mode contributes two ‘squared terms’ : kinetic
and potential energies.

Each quadratic term occurring in the
expression for energy is a mode of absorption of
energy by the molecule. We have seen that in
thermal equilibrium at absolute temperature T,
for each translational mode of motion, the
average energy is � kBT.  A most elegant principle
of classical statistical mechanics (first proved
by Maxwell) states that this is so for each mode
of energy: translational, rotational and
vibrational. That is, in equilibrium, the total
energy is equally distributed in all possible
energy modes, with each mode having an average
energy equal to  � kBT. This is known as the
law of equipartition of energy. Accordingly,
each translational and rotational degree of
freedom of a molecule contributes � kBT  to the
energy while each vibrational frequency
contributes 2  � kBT  = kBT ,  since a vibrational
mode has both kinetic and potential energy
modes.

The proof of the law of equipartition of energy
is beyond the scope of this book. Here we shall
apply the law to predict the specific heats of
gases theoretically. Later we shall also discuss
briefly, the application to specific heat  of solids.

13.6  SPECIFIC HEAT CAPACITY

13.6.1 Monatomic Gases

The molecule of a monatomic gas has only three
translational degrees of freedom. Thus, the
average energy of a molecule at temperature
T is (3/2)kBT .   The total internal energy of a
mole of such a gas is

* Rotation along the line joining the atoms has very small moment of inertia and does not come into play for
quantum mechanical reasons. See end of section 13.6.
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